

Федеральное агентство по управлению

государственным имуществом

Открытое акционерное общество "Научно-исследовательский центр "Строительство" (ОАО "НИЦ "Строительство")

«Центральный научно-исследовательский институт строительных конструкций имени В.А. Кучеренко»

ЦНИИСК им. В.А. Кучеренко

ТЕХНИЧЕСКИЙ ОТЧЕТ

по теме: «Провести динамические испытания безнапорной системы трубопроводов на виброплатформе ЦНИИСК им. В.А.Кучеренко с оценкой возможности их использования в районах РФ с сейсмичностью 7÷9 баллов»

Договор № 647/24-35-10/ск от 20 апреля 2010 г.

Федеральное агентство по управлению государственным имуществом Открытое акционерное общество "Научно-исследовательский центр "Строительство" (ОАО "НИЦ "Строительство") «Центральный научно-исследовательский институт строительных конструкций имени В.А. Кучеренко»

ЦНИИСК им. В.А. Кучеренко

УТВЕРЖДАЮ: Врио директора ЦНИИСКам.В.А.Кучеренко доктор технических наук-И.И.Ведяков 2010г.

ТЕХНИЧЕСКИЙ ОТЧЕТ

по теме: «Провести динамические испытания безнапорной системы трубопроводов на виброплатформе ЦНИИСК им. В.А.Кучеренко с оценкой возможности их использования в районах РФ с сейсмичностью 7÷9 баллов»

Договор № 647/24-35-10/ск от 20 апреля 2010 г.

Заведующий Лабораторией, кандидат технических наук

Зав.Сектором

Ст. научн. сотрудник

Ст. научн. сотрудник

А.В.Грановский

Д.А.Киселев

З.И.Доттуев

Т.М.Хасанов

Москва 2010 г.

ОГЛАВЛЕНИЕ

	стр.
1. ВВЕДЕНИЕ	3
2. ЗАДАЧИ ПРОВОДИМЫХ ЭКСПЕРИМЕНТАЛЬНЫХ	
ИССЛЕДОВАНИЙ	4
3. КОНСТРУКТИВНОЕ РЕШЕНИЕ СИСТЕМЫ ТРУБОПРОВОДОВ	
ИЗ ТРУБ «PRAGMA» И КОЛОДЦЕВ «PIPELIFE»	5
4. ПРОГРАММА И МЕТОДИКА ИСПЫТАНИЙ СИСТЕМЫ ТРУБОПРОВОДОВ ИЗ ТРУБ ПВХ «PRAGMA» И КОЛОДЦЕВ «PIPELIFE» 5. ОБОРУДОВАНИЕ ДЛЯ ИСПЫТАНИЙ НА СЕЙСМИЧЕСКИЕ	32
НАГРУЗКИ. СРЕДСТВА ИЗМЕРЕНИЯ И РЕГИСТРАЦИИ	
ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК	34
5.1. Оборудование для создания динамических нагрузок	34
5.2. Средства измерения и регистрации динамических	
характеристик конструкций и воздействий на них	35
6. РЕЗУЛЬТАТЫ ДИНАМИЧЕСКИХ ИСПЫТАНИЙ СИСТЕМЫ	
ТРУБОПРОВОДОВ ИЗ ТРУБ ПВХ, «PRAGMA» И КОЛОДЦЕВ	
«PIPELIFE» И ИХ АНАЛИЗ	41
6.1. Методика проведения испытаний	41
6.2. Назначение параметров загружения	42
6.3. Условия проведения динамических испытаний	47
7. ЗАКЛЮЧЕНИЕ. Выводы и рекомендации.	50
СПИСОК ЛИТЕРАТУРЫ	52
Приложение 1. Результаты динамических испытаний	
трубопроводов	53
Приложение 2. СВИДЕТЕЛЬСТВО (только в 1-м экз. отчета)	72
Приложение 3. Видеосъемка испытания трубопроводов на сейсмические воздействия (только в 1-м экз. отчета)	75

1. ВВЕДЕНИЕ

Настоящий технический отчет составлен по результатам экспериментальных исследований сейсмостойкости безнапорной системы трубопроводов на базе труб и деталей трубопроводов (фитингов) из ПВХ, «Pragma» с двойной структурированной стенкой из PP-В (далее по тексту Pragma) и пластиковых колодцев «Pipelife».

Испытания трубопроводов, заполненных водой, проводились на специально разработанном в ЦНИИСК им. В.А. Кучеренко стенде (авторы: д.т.н. А. М. Курзанов, к.т.н. А.В. Грановский и ведущий научный сотрудник В. К. Бышенко).

Цель лабораторных испытаний – оценка пригодности и эксплуатационной надежности безнапорной системы трубопроводов на базе труб и фитингов из ПВХ, «Pragma» и пластиковых колодцев «Pipelife» при использовании ее в сейсмических районах с балльностью 7÷9 баллов по шкале MSK-64 [1].

Отчет оформлен в соответствии с требованиями нормативных документов, технических регламентов и стандартов. При описании методики и результатов экспериментально-технических исследований сейсмостойкости безнапорной системы трубопроводов на базе труб «Pragma» и пластиковых колодцев «Pipelife» использовались термины и определения, содержащиеся в действующих стандартах и нормативах [2,3].

2. ЗАДАЧИ ПРОВОДИМЫХ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ

В соответствии с Федеральным законом «О техническом регулировании» новая строительная продукция, разрабатываемая и передаваемая в массовое (серийное) производство подлежит обязательной оценке и подтверждению на соответствие требованиям безопасности.

Важным этапом таких исследований применительно к вопросам оценки сейсмической безопасности являются испытания, в том числе с применением динамического нагружения на специальных стендах, виброплатформах и с помощью специальных вибромашин.

Полученные в результате испытаний данные позволяют определить физико-механические, эксплуатационные И другие характеристики исследуемой конструкции, включая динамические показатели испытываемой системы. Полученные данные являются основанием для оценки возможности расширения области применения исследуемой системы трубопроводов с учетом требований безопасности, эксплуатационной надежности И долговечности, предъявляемых в сейсмических районах.

Оценка возможности применения безнапорной системы трубопроводов на базе труб и фитингов из ПВХ, «Pragma» и пластиковых колодцев «Pipelife» в сейсмических районах России на площадках с балльностью 7÷9 баллов включает в себя следующие этапы:

- Комплексные экспериментальные исследования работы безнапорной системы трубопроводов на базе труб и фитингов из ПВХ, «Pragma» и пластиковых колодцев «Pipelife» с их вибродиагностикой: испытания фрагментов трубопроводов на вибростенде.
- 2. Внесение в Стандарт предприятия или в Альбом технических решений ООО «ПАЙПЛАЙФ РУС» и согласование с ЦНИИСК им. В. А. Кучеренко ОАО «НИЦ «Строительство» изменений (если это потребуется по результатам испытаний) по конструктивному решению трубопроводов при строительстве в сейсмических районах РФ.

3. КОНСТРУКТИВНОЕ РЕШЕНИЕ СИСТЕМЫ ТРУБОПРОВОДОВ ИЗ ТРУБ «PRAGMA» И КОЛОДЦЕВ «PIPELIFE»

Для проведения динамических испытаний Заказчиком (ООО «ПАЙПЛАЙФ РУС») были предоставлены двухслойные трубы «Pragma», трехслойные ПВХ трубы «Pipelife» диаметр которых составлял от 200 до 690мм, пластиковый колодец диаметром 800 мм, а также отводы, переходы, адаптеры, тройники, муфты и комплектующие для соединения труб между собой.

«**Pragma**» – раструбная труба с двойной структурированной стенкой (рис.3.1), предназначенная для строительства безнапорных систем наружной канализации и водоотведения. Трубы производятся из полипропиленаблоксополимера (PP-B) методом двойной соэкструзии, когда одновременно изготавливаются внутренняя и наружная стенки, образующие на выходе из экструдера единое целое. Наружная стенка гофрированная, кирпичного цвета, внутренняя – гладкая, светло-серого цвета, что обеспечивает возможность для телевизионной инспекции во время эксплуатации. Раструб производится отдельно и приваривается к трубе во время производства, обеспечивая герметичность конструкции.

Труба «Pragma» производится в соответствии EN 13476-2007, а в России по ТУ 2248-001-96467180-2008. Основные технические характеристики трубы «Pragma» приведены в табл. 3.1.

Таблица 3.1

Наименование	Единицы измерения
Кольцевая жесткость	8 кН/м ²
Кольцевая гибкость	>30 %
Коэффициент ползучести (Creep ratio)	<4.0
при экстрополяции на 2 года	
Стойкость к удару падающим грузом	10
при 0°C TIR,% не более	10
Гарантия на герметичность	до 0.5 бар

ПВХ трубы «**Pipelife**» (рис. 3.2) изготавливаются из непластифицированного поливинилхлорида, имеют гладкий внутренний и наружный слой, а промежуточный слой вспененный. Вспененный слой существенно снижает массу ПВХ трубы, но при этом она не теряет прочности, сохраняет эксплуатационные характеристики.

Трехслойные ПВХ трубы, предназначены для применения в системах ливневой и хозяйственно-бытовой канализации. Производство продукции проходит согласно установленным технологическим требованиям, в результате чего готовые пластмассовые трубы по всем показателям соответствуют EN 1401-1 и ТУ 2248-002-96467180-2008:

- Кольцевая жесткость пластмассовых труб составляет 4 и 8 кН/м2;
- Длина труб –1,2,3 или 6 м;
- Диапазон диаметров 110-400 мм.

Пластиковые колодцы «Pipelife» (рис. 3.3) для хозяйственно-бытовой и ливневой канализации КК предназначены для доступа к безнапорным канализационным сетям и их обслуживания, а также для подсоединения дополнительных подключений и изменений направления потока.

Основной конструкционной особенностью системы пластиковых колодцев «Pipelife» является их сборная структура. Такой способ позволяет при помощи местных сборочных цехов обеспечить быструю комплектацию заказа в минимальные сроки согласно требованиям конкретного проекта.

Составные части колодцев изготовлены из полипропилена способами литья и экструзии.

Система «Pipelife» позволяет поставлять колодцы с диаметрами тела колодца 400, 630, 800, 1000 мм с конфигурацией подключений под любым углом в диапазоне диаметров 110÷600 мм.

Классификация колодцев «Pipelife» происходит по номинальному диаметру тела колодца (DN). Свойства пластмасс зависят от используемого сырья, модификаторов, а также используемых методов производства. Средние значения параметров пластмасс, которые использует фирма «Pipelife», приводятся в табл. 3.2.

T (\mathbf{a}	
Гаолина	- 1	
таолица	\mathcal{I}	

Сройство	Еп изм	пру	ПП Г	Полиэтилен		
Своиства	Ед. изм.	IIDA	1111 - D	ПЭ-80	ПЭ-100	
Удельный вес	г/см ³	1,38÷1,47	0,90	0,92÷0,94	0,94÷0,96	
Темп. размякания (Vicat)	°C	>79	146	120	128	
Модуль Юнга	МПа	1000	1150	700	1000	
Модуль Гука	МПа	30	20	19	22	
Сопротивление на	MПа	12	27	20	25	
границе упругости	Ivii ia	72	21	20	23	
Удлинение при разрыве	%	>80	>500	600	>600	
Коэфф. линейного						
температурного	мм/м · °С	0,03	0,12	0,18	0,20	
расширения (с)						
Коэфф.	$P_{T}/v^{2} \cdot C$	0.15	0.20	0.36	0.42	
теплопроводности	DI/M · C	0,15	0,30	0,30	0,42	
Макс. постоянная						
кратковременная	ംറ	60/90	70/100	20/40	20/40	
температура	C	00/90	/0/100		20/40	
эксплуатации						

Для проведения динамических испытаний безнапорной системы трубопроводов на базе труб и фитингов из ПВХ, «Pragma» и пластиковых колодцев «Pipelife» на виброплатформе был сконструирован фрагмент трубопроводной системы водоотведения (рис. 3.4), с использованием труб, колодца, отводов, тройников, муфт, переходов и адаптеров различных диаметров. Схема расположения с указанием размеров элементов трубопроводов показана на рис. 3.5.

Соединение труб между собой при помощи муфт и переходов осуществляется с помощью уплотнительных колец. Уплотнительное резиновое кольцо устанавливается в паз первого гофра, затем производится установка трубы в муфту или переход до упора (рис. 3.6). На рис. 3.7÷3.12 показаны фрагменты и узлы соединения трубопровода.

Размеры и диаметры полипропиленовых труб «Pragma» с двойной структурированной стенкой и их комплектующих для трубопроводов представлены в табл. 3.3÷3.14.

Размеры и диаметры труб ПВХ и их комплектующих для трубопроводов представлены в табл. 3.15÷3.31.

Элементы трубопровода и их геометрические параметры приняты в соответствии с существующей технической документацией:

- 1. Технический каталог. «Pragma». ООО «Пайплайф Рус».
- 2. Технический каталог. «Пластиковые колодцы». ООО «Пайплайф Рус».
- Технические условия. ТУ 2248-001-96467180-2008 «Трубы гофрированные двухслойные из полипропилена блоксополимера (PP-B) для систем наружной канализации».
- Технические условия. ТУ 2248-002-96467180-2008 «Трубы многослойные из непластифицированного поливинилхлорида (НПВХ) для систем наружной канализации».
- 5. Технические условия. ТУ 2291-003-96467180-2009 «Колодцы пластиковые».
- 6. «Системы внешней канализации из РVС». ООО «Пайплайф Рус».
- 7. «Pragma». «Системы наружной канализации из ПП». ООО «Пайплайф Рус».

Труба Pragma с раструбом и уплотнительным кольцом

Табл. 3.3.

Номинальный размер	Наружный диаметр, мм	Внутренний диаметр, мм	Вес 1 м/п, кг	Длина раструба, мм	Кольцевая жесткость	Артикул
DN/0D 160	160	139	1,20	97		24001660
DN/0D 200	200	176	1,88	113]	24002060
DN/ID 200*	227	200	2,23	105]	23002206
DN/0D 250	250	221	3,24	129]	24002560
DN/ID 250*	285	250	3,60	110]	23002256
DN/0D 315	315	277	4,67	148	8 ĸN/m2	24003160
DN/ID 300	343	300	4,70	116		0101300600P
DN/0D 400	400	349	6,99	158]	24004060
DN/ID 400	458	400	7,90	139]	0101400600P
DN/0D 500*	500	437	10,80	188		24005060
DN/ID 500	573	500	12,50	170		0101500600P
DN/OD 630*	630	549	16,50	232]	24006360
DN/ID 600	688	600	18,30	197]	0101600600P
DN/ID 800	925	800	34.50	247]	0101800600P
DN/ID 1000	1140	1000	50.00	403		0101100600P

дополнительный ассортимент труб, только по заказу под спецпроекты

Дренажная труба Pragma с раструбом

Табл. 3.4.

Номинальный размер	Наружный диаметр, мм	Внутренний диаметр, мм	Угол перфорации	Кольцевая жесткость	Артикул
DN/0D 160	160	139	220°		24701670
DN/0D 200	200	176	220°	9 N /2	24702070
DN/0D 250	250	221	220°	0 KN/M2	24702570
DN/0D 315	315	277	220 ⁰		24703170
DN/ID 400	400	349	220 ⁰		24704070

Двойной раструб Pragma

Табл. 3.5.

Описание	Номинальный размер	Внутренний диаметр, (мм)	Артикул
Двойной раструб Pragma®	DN/OD 160	160	92163454
House be by Longing	DN/OD 200	200	92203454
	DN/ID 200*	227	23604200
	DN/0D 250	250	92253454
	DN/ID 250*	285	23604250
	DN/OD 315	315	92313454
	DN/ID 300	343	23604300
	DN/OD 400	400	92403454
	DN/1D 400	458	23604400
	DN/0D 500*	500	92503454
	DN/ID 500	573	23604500
	DN/OD 630*	630	92633458
	DN/1D 600	688	23604600
	DN/1D 800	925	23604800
	DN/ID 1000	T 140	23604100

Ремонтная муфта

Табл. 3.6.

Описание	Номинальный размер	Внутренний диаметр, (мм)	Артикул
Ремонтная муфта Pragma®	DN/OD 160	160	25300160
	DN/OD 200	200	25300200
	DN/ID 200*	227	23603200
	DN/0D 250	250	25300250
AL AL	DN/ID 250*	285	23603250
	DN/OD 315	315	25300310
	DN/ID 300	343	23603300
	DN/OD 400	400	25300400
	DN/ID 400	458	23603400
	DN/OD 500*	500	25300500
	DN/ID 500	573	23603500
	DN/OD 630*	630	25300630
	DN/ID 600	688	23603600
	DN/ID 800	925	23603800
	DN/ID 1000	1140	23603100

Переход трубы Pragma на бетонный колодец

Табл. 3.7.

Описание	Номинальный размер	Внутренний диаметр, (мм)	Артикул
Переход трубы Pragma® на бетонный колодец	DN/OD 160	160	0104180160P
	DN/OD 200	200	0104180200P
	DN/ID 200*	227	0102180200P
	DN/0D 250	250	0104180250P
	DN/ID 250*	285	0102180250P
	DN/OD 315	315	0104180315P
	DN/ID 300	343	0102180300P
	DN/OD 400	400	0104180400P
	DN/1D 400	458	0102180400P
	DN/OD 500*	500	0104180500P
	DN/1D 500	573	0102180500P
	DN/OD 630*	630	0104180630P
	DN/ID 600	688	0102180600P
	DN/ID 800	925	0102180800P
	DN/ID 1000	T40	под заказ

Отвод

Табл. 3.8.

Описание	Номинальный размер	Внутренний диаметр,	Yron 15°	Угол 30°	Yron 45°	Yron 90°
onneanne		мм	Артикул	Артикул	Артикул	Артикул
Отвод Pragma®	DN/OD 160	160	25100161	25100163	25100164	под заказ
	DN/OD 200	200	25100201	25100203	25100204	25100209
	DN/1D 200*	227	под заказ	под заказ	под заказ	под заказ
	DN/OD 250	250	25100251	25100253	25100254	25100259
	DN/1D 250*	285	под заказ	под заказ	под заказ	под заказ
	DN/0D 315	315	25100311	25100313	25100314	25100319
	DN/ID 300	343	23601301	23601303	23601304	23601309
	DN/OD 400	400	25100401	25100403	25100404	25100409
	DN/ID 400	458	23601401	23601403	23601404	23601409
	DN/OD 500*	500	25100501	25100503	25100504	25100509
	DN/ID 500	573	23601501	23601503	23601504	23601509
	DN/OD 630*	630	25100631	25100633	25100634	25100639
	DN/ID 600	688	23601601	23601603	23601604	23601609
	DN/ID 800	925	под заказ	под заказ	29601804	под заказ
	DN/ID 1000	T140	под заказ	под заказ	29601904	под заказ

Тройник 45°

Табл. 3.9.

Описание	Наименование	Основная муфта	Внутренний диаметр муфты бокового подключения					
	номинальному размеру	ому размеру диаметром, мм	мм	Артикул	мм	Артикул	мм	Артикул
Тройник 45ª Pragma®	DN/OD 160	160	160	25200169				
	DN/OD 200	200	160	25200208	200	25200209		
	DN/ID 200*	227	160	под заказ	200/227	под заказ		
	DN/0D 250	250	160	25200257	200/227	25200258		
	DN/ID 250*	285	160	под заказ	200/227	под заказ		
	DN/OD 315	315	160	25200316	200/227	25200317	250/285	25200318
	DN/ID 300	343	200/227	23602307	250/285	23602308		
	DN/OD 400	400	200/227	25200405	250/285	25200406	315/343	25200407
	DN/ID 400	458	200/227	23602406	315/343	23602407		
	DN/OD 500*	500	200/227	25200505	315/343	25200507		
	DN/ID 500	573	200/227	23602505	315/343	23602507		
	DN/OD 630*	630	200/227	25200634	315/343	25200636	400/458	под заказ
	DN/ID 600	688	200/227	23602605	315/343	23602607	400/458	23602608
	DN/ID 800	925	315/343	под заказ	400/458	под заказ	500/573	под заказ
	DN/ID 1000	1140	400/458	под заказ	500/573	под заказ	630/688	под заказ

Переход/Адаптер Pragma – ПВХ

Табл. 3.10.

Описание	Номинальный размер	Внутренний диаметр раструба, мм	Наружный диаметр переходы на ПВХ, мм	Артикул
Переход с трубы Pragma®	DN/OD 160	160	160	25350160
на раструб трубы ПВХ	DN/OD 200	200	200	25350200
	DN/OD 250	250	250	25350250
	DN/OD 315	315	315	25350310
	DN/1D 300	300	315	под заказ
	DN/OD 400	400	400	25350500
	DN/ID 400	400	400	под заказ
	DN/OD 500	500	500	под заказ

Переход раструб Pragma – труба ПВХ

Табл. 3.11.

Описание	Номинальный размер	Внутренний размер адаптера, мм	Артикул
Переход раструб Pragma® - труба ПВХ	DN/OD 160	160	25350160
	DN/OD 200	200	25350200
	DN/0D 250	250	25350250
	DN/OD 315	315	25350310
	DN/OD 400	400	25350400

Переход редукционный Pragma

Табл. 3.12.

	Наименование основного	Основной			Растру	б перехода с в	нутренним дио	метром		
Описание	прохода по номинальному размеру	наружный диаметр, мм	мм	Артикул	мм	Артикул	мм	Артикул	мм	Артикул
Переход редукционный Pragma®	DN/OD 160	160	TIO	под заказ						
	DN/OD 200	200	160	25440208	TIO	под заказ				
	DN/ID 200*	227	200	под заказ	160	под заказ	TIO	под заказ		
	DN/0D 250	250	227	25440258	200	под заказ	160	под заказ		
	DN/ID 250*	285	250	под заказ	227	под заказ	200	под заказ		
	DN/OD 315	315	250	25440318	227	под заказ	200	25440317	160	под заказ
	DN/ID 300	343	285	под заказ	250	под заказ	227	под заказ	200	под заказ
	DN/OD 400	400	343	под заказ	315	25440408				
	DN/ID 400	458	400	под заказ	343	под заказ	315	под заказ		
	DN/OD 500*	500	400	25440508	458	под заказ				
	DN/ID 500	573	500	23607504	400	под заказ	458	под заказ		
	DN/OD 630*	630	573	под заказ	500	25440638				
	DN/ID 600	688	630	под заказ	573	23607605	500	под заказ		
	DN/ID 800	925	688	под заказ						
	DN/ID 1000	T140	925	под заказ						

Заглушка Pragma

Табл. 3.13.

Описание	Номинальный размер	Наружный диаметр, мм	Артикул
Заглушка Pragma®	DN/OD 160	160	25550160
	DN/OD 200	200	25550200
	DN/ID 200*	227	под заказ
	DN/OD 250	250	25550250
Martin	DN/ID 250*	285	под заказ
	DN/0D 315	315	25550310
	DN/1D 300	343	23608300
	DN/OD 400	400	25550400
	DN/1D 400	458	23608400
	DN/0D 500*	500	25550500
	DN/1D 500	573	23608500
	DN/OD 630*	630	25550630
	DN/1D 600	688	23608600
	DN/1D 800	925	под заказ
	DN/ID 1000	T140	под заказ

Уплотнительное кольцо

Табл. 3.14.

Описание	Номинальный размер	Наружный диаметр, мм	Артикул
	DN/OD 160	160	95016700
	DN/OD 200	200	95020700
	DN/ID 200*	227	под заказ
	DN/OD 250	250	95025700
	DN/ID 250*	285	под заказ
	DN/OD 315	315	95031700
	DN/1D 300	343	95030720
	DN/OD 400	400	95040700
	DN/1D 400	458	95040720
	DN/OD 500*	500	95050700
	DN/1D 500	573	95050720
	DN/OD 630*	630	95063700
	DN/ID 600	688	95060720
	DN/1D 800	925	95080720
	DN/ID 1000	TI40	95090720

Труба ПВХ

Табл. 3.15.

			Труба	раструбная	из PVC-U/ м	ланжетное у	плотнение	
0	d _л [мм]	Длина трубы [мм]	е _л [мм]	d _i [мм]	t [мм]	L [M]	d _m [мм]	Артикул
				SN =	4 кH/м2 (SI	DR 41)UD		
		1000						0110110100P
	110	2000	3.2					0110110200P
		3000	-,-					0110110300P
		6000						0110110600P
		1000						0110160100P
	160	2000	4,0	152,0	85		181	0110160200P
		3000				3,0 6,0		0110160300P
, \J, J		6000				3,0		0110160600P
		1000				0,0		0110200100P
	200	2000	4,9	190,2	102		225	0110200200P
		3000						0110200300P
┝━━━┥━┙┛╵┤	-	6000						0110200600P
	250		6,2	237,6	140		290	
لو خوار خ	315		7,7	299,6	152		355	
	400		9,8	380,4	174		447	
				SN =	8 кH/м2 (SI	DR 34)UD		
тандарт : PN-EN 1401-1	160		4,7	150,6	85		181	
	200		5,9	188,2	102		225	
	250		7,3	235,4	143	3,0	290	
	315		9,2	296,6	152	.,.	357	
	400		11,7	376,6	174		449	

Тройник 45° ПВХ

Табл. 3.16.

			Трой	ник 45° из Р	VC-U		
d_/d, [мм]	Z, [MM]	Z ₂ [MM]	Z, [MM]	t, [мм]	t ₂ [мм]	А [мм]	Артикул
110/110	38	133	133	70	70	70	222011900
160/110	57	163	170	84	70	84	222016700
160/160	92	205	205	84	84	84	222016900
200/110	35	201	165	124	70	124	222020600
200/160	93	239	211	124	84	124	222020800
200/200	124	236	236	124	124	124	22202090C
*250/110	153	370	305	130	87	135	
*250/160	153	340	305	130	107	135	
*250/200	153	320	305	130	130	135	
*250/250	158	335	335	138	138	138	
*315/110	179	460	373	138	87	155	
*315/160	179	430	373	138	107	155	
*315/200	179	410	373	138	130	155	
*315/250	179	383	373	138	130	155	
*315/315	201	438	438	154	154	154	
*400/110	208	582	464	150	87	176	
*400/160	208	552	464	150	107	176	
*400/200	208	532	464	150	130	176	
*400/250	208	510	464	150	130	176	
*400/315	208	487	464	150	138	176	
*400/400	318	588	548	189	189	189	

В исполнении из РР

Тройник 45° ПВХ

Табл. 3.17.

d ₁ /d ₂ [MM]	Z ₁ [MM]	t [мм]	Артикул
160/110	140	70	224416700
200/160	145	84	224420800
250/200	185	165	
315/250	330	183	
400/315	415	205	

Табл. 3.18.

	d.		Тройн	ик 90° из РVC-U	
			d_/d,[ww]		Артикул
		110/110	250/160	315/315	22221190A
1		160/110	250/200	400/110	22221670Z
		160/160	a _n /a ₁ [AMA] 250/160 315/315 250/200 400/110 250/250 400/160 315/110 400/200 315/160 400/250	22221690Z	
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	400/200		
		200/160	315/160	400/250	22222080D
		200/200	315/200	400/315	22222090D
	• • • • • • • • • • • • • • • • • • •	250/110	315/250	400/400	

Отвод ПВХ

*400

*400

*400

Муфта ПВХ

Табл. 3.20.

Муфта ПВХ

Табл. 3.21.

Переход ПВХ

Табл. 3.22.

d ₁ /d ₂ [MM]	Z, [MM]	t [мм]	Артикул
160/110	140	70	22441670C
200/160	145	84	22442080C
250/200	185	165	
315/250	330	183	
400/315	415	205	

Ревизия ПВХ

Табл. 3.23.

Артикул	D, [MM]	A [mm]	t [мм]	Z ₂ [MM]	Z, [MM]	d _n [MM]
	102	70	70	65	210	110
224816002	151	84	84	90	260	160
224820002	193	165	165	110	358	200
	191	183	183	235	468	250
	191	205	205	235	490	315
	191	234	324	235	519	400

Переход ПВХ

Переход (адаптер) РVC-U на трубу из чугуна L [MM] d_л [мм] d, [MM] Артикул L 110 126 178 160 180 230 200 275 255 Ъ þ

Переход ПВХ

Табл. 3.25.

Артикул	L [MM]	В [мм]	A [MM]	d ₂ [мм]	d, [мм]	d_ [мм]
	200	114	100	151	160	110
	250	130	110	214	224	160
	310	173	130	285	300	200

Табл. 3.24.

Муфта ПВХ

Табл. 3.26.

Артикул	А [мм]	L [MM]	t [мм]	d, [мм]	d _{1beton} [MM]	d _n [мм]
	80	190	84	206	150	160
	80	217	165	264	200	200
	80	300	183	324	250	250

Пробка ПВХ

Табл. 3.27.

Заглушка ПВХ

Табл. 3.28.

		ď
L	1	

d _n [мм]	L [ʌʌʌ]	Артикул
110	46	225511000
160	54	225516000
200	65	225520000
250	-	
315	-	
400	-	

Задвижка ПВХ

Табл. 3.29.

		Ливн	невая зад	вижка PVC-	U
d_ [ʌʌʌ]	t [мм]	A [MM]	L [MM]	Н [мм]	Артикул
110	61	61	307	230	22561100D
160	74	74	337	255	22561600D
200	86	100	451	300	22562000D

Задвижка выполнена из нержавеющей стали. Она работает автоматически, защищая помещения, расположенные на нижних этажах, от заливания вследствие обратного течения сточных вод и от грызунов. Она позволяет также

Втулка ПВХ

Табл. 3.30.

Ответвление ПВХ

Табл. 3.31.

D×d [MM]	Н* [мм]	т [мм]	A [MM]	Артикул
250×160	116	76	168	
315×160	116	76	168	
400×160	116	76	168	
315×200	156	131	210	

Рис. 3.1.

Рис. 3.2.

Рис. 3.3.

Рис. 3.4.

2. Соединение труб Pragma® с гладкими трубами из ПВХ

3. Резка трубы и установка уплотнительного кольца

Резка трубы производится простой пилой между ребрами жесткости. В крайний паз перед последним ребром вставляется уплотнительное кольцо.

Рис. 3.6

Рис. 3.7.

Рис. 3.8.

a)

Рис. 3.10.

Рис. 3.11.

Рис. 3.12.

4. ПРОГРАММА И МЕТОДИКА ИСПЫТАНИЙ СИСТЕМЫ ТРУБОПРОВОДОВ ИЗ ТРУБ ПВХ, «PRAGMA» И КОЛОДЦЕВ «PIPELIFE»

Программа испытаний включает в себя следующие этапы:

- 1. Анализ конструктивных особенностей.
- Выбор и согласование с Заказчиком конструктивных параметров и самих элементов для назначения экспериментального натурного фрагмента.
- 3. Подготовка вибростенда и измерительного оборудования для проведения динамических испытаний.
- Назначение режимов нагружения фрагмента трубопровода динамической нагрузкой, соответствующей силовым воздействиям на сооружения при землетрясениях различной интенсивности (от 7 до 9 баллов).
- 5. Обработка и анализ результатов экспериментальных исследований.
- Составление технического отчета по результатам испытаний фрагмента трубопровода с рекомендациями по обеспечению эксплуатационной надежности при сейсмических воздействиях.

В ЦНИИСК им. В.А. Кучеренко под руководством д.т.н. А.М. Курзанова разработан испытательный стенд, возбуждение колебаний которого может осуществляться одним из двух способов:

> колебания платформы-маятника, который установлен на испытательный стенд, возбуждаются с помощью вибромашины ВИД-12, закрепленной на платформе. За счет инерционной силы, развиваемой ВИД-12, обеспечивается тот или иной частотный спектр воздействий на испытательный стенд и определенный амплитуды колебаний платформы. Как уровень показали испытания, максимальная величина амплитуды колебаний платформы при использовании ВИД-12 составляет 150 мм;

 в зависимости от поставленной задачи вместо инерционной нагрузки на платформу от вибромашины возможно возбуждение колебаний платформы обеспечить за счет ударного воздействия. Испытания показали, что в момент удара максимальное ускорение на уровне основания стенда составляет 1,2g.

С учетом отмеченного выше программа динамических испытаний трубопроводов на виброплатформе включает в себя следующие этапы.

 Проводятся испытания системы трубопроводов заполненных водой с изменением частотного спектра от 0 до 18-20 Гц при фиксированной амплитуде перемещения виброплатформы. Далее изменяется значение амплитуда и осуществляется задание

частот в указанном выше спектре. Длительность каждого из указанных этапов динамического нагружения (при фиксированных амплитуде и частоте) системы составляет приблизительно 30сек.

- По результатам испытаний (п.1) устанавливаются уровни воздействий, соответствующие резонансным колебаниям системы, и уровни ускорений виброплатформы, соответствующие 7÷9-ти балльным воздействиям по шкале MSK-64.
- 3. После завершения испытаний заданной В соответствии с программой изменения амплитудно-частотного спектра виброплатформы проводятся повторные испытания при сочетаниях амплитудно-частотных параметрах виброплатформы, соответствующих резонансным колебаниям системы и 7÷9-ти балльным воздействиям. Длительность повторных динамических испытаний при указанных выше сочетаниях составляет 40-50сек.
- 4. Если в процессе испытаний имеют место разрушения или нарушение герметичности трубопроводов, совместно с Заказчиком разрабатываются способы повышения надежности трубопровода, и испытания повторяются согласно п.п.1,2.

5. ОБОРУДОВАНИЕ ДЛЯ ИСПЫТАНИЙ НА СЕЙСМИЧЕСКИЕ НАГРУЗКИ. СРЕДСТВА ИЗМЕРЕНИЯ И РЕГИСТРАЦИИ ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК

5.1. Оборудование для создания динамических нагрузок.

Как уже отмечалось, для создания динамических воздействий на испытываемые образцы использовался специальный стенд.

Стенд состоит из маятниковой платформы, подвешенной на гибких (из полосовой стали) силовых связях к опорной силовой раме. Рама жестко защемлена в силовой пол лабораторного корпуса. Активация платформы осуществляется вибромашиной ВИД-12М, установленной на консоли маятниковой платформы (см. фото на рис. 5.1).

Вибромашина ВИД-12М позволяет обеспечить необходимые параметры динамических воздействий на исследуемые образцы в широком диапазоне частот и инерционных нагрузок путем возбуждения механических колебаний платформы в горизонтальной плоскости. На фото рис. 3.4 показан общий вид виброплатформы с установленными на ней образцами.

Управление ВИД-12М осуществляется с пульта управления, расположенного в электрошкафу. Основные технические характеристики маятниковой виброплатформы приведены в табл. 5.1.

Основные технические данные машины ВИД-12 Таблица 5.1.

NoNo	Наименование параметра	Значение
1	Инерционная сила, развиваемая машиной при наибольшем радиусе дебалансов:	
	- при 60 об/мин (1 Гц) - при 180 об/мин (3 Гц) - при 240 об/мин (4 Гц)	0,8 т 7,0 т 12,5 т
	- при 300 об/мин (5 Гц)	20,0 т
2	Частотная характеристика - нижняя частота, Гц - верхняя частота, Гц	0,4 25
3	Характер изменения частот	бесступенчатый

Примечание: по соображениям прочности отдельных деталей и исходя веса вибромашины при любой скорости вращения инерционная сила ограничена величиной 12 т.

5.2 Средства измерения и регистрации динамических характеристик конструкций и воздействий на них

Регистрация и измерение сигналов проводились при помощи специализированного измерительно-вычислительного комплекса МІС - 036, предназначенного для сбора, преобразования, регистрации, обработки, передачи и представления информации поступающей с датчиков.

Комплекс выполняет следующие функции:

- измерение, регистрацию и первичную обработку сигналов (частотных, дискретных и пр.), полученных в результате испытаний;
- отображение значений измеряемых величин или преобразованных параметров на мониторе;
- контроль значений измеряемых величин или преобразованных параметров; оценка результатов их измерения и преобразования;
- самодиагностику проводимых измерений (анализ работоспособности с возможностью вызова диагностических программ);
- архивацию результатов измерения и преобразования (хранение данных с возможностью просмотра и анализа);
- вывод текущих значений измеряемых параметров, кодов аварий и технологических сообщений на ЭВМ верхнего уровня;
- возможность подключения печатающих устройств, в том числе для оформления протоколов результатов измерений;
- возможность связи с другими системами (подключение в существующую локальную вычислительную сеть);
- возможность выдачи сигнала типа «сухой контакт» для включения сигнализации и использования в системах защиты;
- возможность выдачи тестовых аналоговых сигналов.
Измерительно-вычислительный комплекс МІС – 036 дополнительно укомплектован ноутбуком со специализированным пакетом прикладных И периферийных устройств, необходимых программ для автоматизированного обработки процесса сигналов, a также для документирования результатов обработки (рис. 5.2, а).

Для измерения ускорений, частот колебаний, а также динамических перемещений применяются однокомпонентные датчики – акселерометры АТ 1105 – 10м (рис. 5.2, б).

Характеристики датчиков (акселерометров) представлены в таблице 5.2.

Основные технические данные акселерометра АТ 1105 – 10м

Таблица	5.2.
гаолица	··

NoNo	Наименование параметра	Значение
1	Электропитание от источника	$\pm 12 \pm 12$
	постоянного тока относительно	
	средней точки, В	
2	Диапазон измерения, м/с ² (g)	98,1 (10,0)
3	Частотная характеристика	
	- нижняя частота, Гц	0
	- верхняя частота, Гц	700
4	Диапазон рабочих температур, ⁰ С	от +15 до +35

Точки расположения акселерометров выбирались из следующих условий:

- места, где по результатам расчетов ожидается развитие максимальных ускорений и перемещений;

- для контроля задаваемых динамических нагрузок один датчик был установлен на виброплатформе.

Общее количество контролируемых точек (количество акселерометров) - 10. Схема расстановки датчиков, установленных на фрагменты трубопровода, показана на рис. 5.3.

Рис. 5.1

б)

Рис. 5.2

6. РЕЗУЛЬТАТЫ ДИНАМИЧЕСКИХ ИСПЫТАНИЙ СИСТЕМЫ ТРУБОПРОВОДОВ ИЗ ТРУБ ПВХ, «PRAGMA» И КОЛОДЦЕВ «PIPELIFE» И ИХ АНАЛИЗ

6.1. Методика проведения испытаний

Натурные испытания фрагментов трубопровода проводились вибрационным (резонансным) методом, который позволяет измерить количественно силовую нагрузку, имитирующую сейсмическое воздействие в широком диапазоне частот.

По данным вибрационных испытаний для конкретных уровней определены нагружения были амплитудно-частотные характеристики испытуемого фрагмента, представляющие зависимость амплитуд колебаний сооружения от частоты гармонического воздействия. Кроме этого, по ЭВМ обработки c результатам на использованием специального программного комплекса «WinПОС» записей были построены зависимости изменения ускорений в различных точках модели от времени. Как уже отмечалось выше, акселерометры крепились к следующим элементам экспериментальной модели:

- к виброплатформе, что позволяло оценивать уровень динамического воздействия на модель и сравнивать их с нормативными значениями ускорения;
- непосредственно к фрагментам испытываемых образцов.

Изменяя частоту воздействия и амплитуды колебаний платформы, оценивались динамические характеристики (частоты основного тона колебаний, диссипативные свойства и пр.), а также принципиальный характер работы экспериментальной модели.

Опирание элементов трубопроводов на платформу осуществлялось через специальные прокладки, расположенные с шагом 30÷40см по длине трубопровода. Принятое опирание предоставляет более жесткие условия эксплуатации трубопровода при сейсмических воздействиях по сравнению с трубопроводом, уложенном на постель из грунтового основания.

6.2. Назначение параметров загружения

Длительность сейсмического воздействия. По данным [8,9] продолжительность основной части процесса колебаний составляет 10÷40 сек (землетрясение в Сан-Франциско 18.04.1906 – сильные колебания продолжались 25 сек, Мехико – 28.07.1957–15 сек).

Периоды колебаний. По наблюдениям Б.К. Карапетяна [10] максимальные ускорения почвы при землетрясениях соответствовали периодам 0.05 и 0.1 сек (f=20 и 10 Гц). По данным И.Л. Корчинского [9]:

 при жестких системах (T=0÷0.05) максимальные ускорения возникают почти мгновенно с началом колебаний (зона наиболее высоких значений коэффициента динамичности);

- наиболее характерные периоды сейсмического воздействия находятся в диапазоне короткопериодного спектра от 0.1 до 0.5 сек (f \rightarrow от 10 до 2 Гц);

– в [8] отмечается, что как показывают многочисленные экспериментальные исследования, независимо от частот внешнего воздействия сооружение обычно колеблется с частотой, отвечающей частоте их собственных колебаний. Периоды же свободных колебаний большинства зданий составляют 0.1–2.0 сек. Т.е. частота динамической нагрузки, испытываемой сооружением в условиях землетрясений будет находиться в основном в пределах 0.5–10 Гц.

Число циклов нагружения. Под руководством И.Л. Корчинского [9,11] P.C. Бердяевой, Г.В. Беченевой и В.А. Ржевским были проведены испытания железобетонных и стальных балочных образцов при нагружениях со скоростью 300÷1000 циклов в минуту, что как указывается в [9] отвечает скорости нагружения строительных конструкций при сейсмических нагрузках.

Этапы загружения приведены в таблице 6.1 и выбраны так, чтобы иметь возможность оценить поведение трубопровода при резонансе. Указанные в

таблице амплитудно-частотные характеристики и соответствующие им величины ускорений соответствуют значениям, полученным по данным акселерометров, установленных на виброплатформе.

Динамические нагрузки создавались при помощи вибромашины ВИД-12М, путем возбуждения механических колебаний в горизонтальной плоскости.

Приведенные в табл. 6.1 значения по цветовой гамме соответствуют зонам сейсмичности, указанным на карте сейсмического районирования территории РФ (рис. 6.1). В таблицах 6.2÷6.7 приведены результаты обработки показаний акселерометров, установленных непосредственно на платформе и элементах трубопровода (рис. 5.3).

В Приложении 1 к настоящему отчету приведены данные замеров ускорений по датчикам, установленным на экспериментальной модели.

Параметры динамического нагружения платформы

				таолиц
<u>№</u> режима	Частота $f(T_{\rm ev})$	Амплитуда	Ускорение $(11/a^2)$	балльность
Jenninu	J (1 ų)	А (ММ)	u (<i>M</i> /C)	-
1	3.6	6.7	3.43	8.8
2	3.9	4.7	2.84	8.5
3	4.4	3.7	2.83	8.5
4	3.6	6.7	3.43	8.8
5	3.9	4.7	2.84	8.5
6	4.4	3.7	2.83	8.5
7	3.6	6.7	3.43	8.8
8	5.1	2.0	2.01	8.0
9	5.8	2.0	2.63	8.4
10	4.1	5.2	3.47	8.8
11	4.9	4.9	4.62	9.2
12	5.5	4.0	4.76	9.3
13	5.9	1.6	2.13	8.1
14	7.8	2.5	5.99	9.6
15	8.6	2.4	6.97	9.8
16	9.4	2.4	8.49	10.1
17	2.9	31.1	10.31	10.4
18	3.6	28.1	14.37	10.8
		-		

Таблица 6.1.

Таблица 6.2.

	датчик №1 (1-2-1) продольн					датчик №2 (1-2-2) верт			
Nº	f, Гц	А, мм	а, м/с ²	бал.	Nº	f, Гц	А, мм	а, м/с ²	бал.
1	4	3.6	6.8	3.48	1	3.6	0.2	0.08	3.4
2	5	3.9	4.8	2.88	2	3.9	0.1	0.07	3.2
3	6	4.4	3.8	2.88	3	4.4	0.1	0.08	3.4
4	8	4.2	3.7	2.58	4	4.2	0.1	0.07	3.2
5	9	4.6	5.1	4.25	5	4.6	0.1	0.12	3.9
6	10	3.6	9.2	4.68	6	3.6	0.2	0.11	3.8
7	11	4.1	6.2	4.08	7	4.1	0.2	0.10	3.7
8	5.1	1.9	1.92	7.9	8	5.1	0.1	0.09	3.5
9	5.8	2.4	3.17	8.7	9	5.8	0.2	0.26	5.1
10	4.1	5.2	3.45	8.8	10	4.1	0.1	0.07	3.2
11	4.9	4.9	4.62	9.2	11	4.9	0.2	0.20	4.7
12	5.5	4.0	4.78	9.3	12	5.5	0.4	0.44	5.8
13	5.9	1.9	2.57	8.4	13	5.9	0.2	0.24	4.9
14	7.8	3.1	7.52	9.9	14	7.8	0.3	0.78	6.6
15	8.6	3.4	10.06	10.3	15	8.6	0.3	0.99	7.0
16	9.4	4.2	14.79	10.9	16	9.4	0.9	3.28	8.7
17	2.9	31.7	10.51	10.4	17	2.9	0.5	0.15	4.3
18	3.6	36.1	18.44	11.2	18	3.6	0.9	0.47	5.9

Таблица 6.3.

Ę	датчик №1 (1-2-3) продольн на платф.					датчик №2 (1-2-4) верт на платф.			
N⁰	f, Гц	А, мм	а, м/с ²	бал.	Nº	f, Гц	А, мм	а, м/с ²	бал.
1	3.6	6.7	3.43	8.8	1	3.6	0.2	0.09	3.5
2	3.9	4.7	2.84	8.5	2	3.9	0.1	0.08	3.4
3	4.4	3.7	2.83	8.5	3	4.4	0.1	0.08	3.4
4	4.2	3.7	2.54	8.3	4	4.2	0.1	0.07	3.2
5	4.6	5.0	4.17	9.1	5	4.6	0.1	0.12	3.9
6	3.6	9.0	4.62	9.2	6	3.6	0.2	0.12	3.9
7	4.1	6.0	4.01	9.0	7	4.1	0.2	0.11	3.8
8	5.1	1.9	2.00	8.0	8	5.1	0.1	0.07	3.2
9	5.8	2.0	2.71	8.4	9	5.8	0.2	0.21	4.7
10	4.1	5.2	3.43	8.8	10	4.1	0.1	0.08	3.4
11	4.9	4.9	4.61	9.2	11	4.9	0.2	0.15	4.3
12	5.5	4.0	4.81	9.3	12	5.5	0.3	0.30	5.3
13	5.9	1.6	2.20	8.1	13	5.9	0.1	0.20	4.7
14	7.8	2.7	6.57	9.7	14	7.8	0.1	0.27	5.1
15	8.6	2.8	8.09	10.0	15	8.6	0.1	0.34	5.4
16	9.4	3.3	11.43	10.5	16	9.4	1.2	4.05	9.0
17	2.9	30.8	10.20	10.4	17	2.9	0.2	0.08	3.4
18	3.6	29.9	15.30	10.9	18	3.6	0.1	0.06	2.9

Таблица 6.4

	датчик №1 (1-4-1) продольн					датч	ик №2 (1-	4-2) верт	
Nº	f, Гц	А, мм	а, м/с ²	бал.	Nº	f, Гц	А, мм	а, м/с ²	бал.
1	3.6	0.2	0.11	3.8	1	3.6	6.8	3.50	8.8
2	3.9	0.1	0.08	3.4	2	3.9	4.8	2.90	8.5
3	4.4	0.1	0.06	2.9	3	4.4	3.8	2.92	8.5
4	4.2	0.1	0.06	2.9	4	4.2	3.7	2.60	8.4
5	4.6	0.1	0.06	2.9	5	4.6	5.2	4.31	9.1
6	3.6	0.3	0.15	4.3	6	3.6	9.2	4.71	9.2
7	4.1	0.2	0.10	3.7	7	4.1	6.2	4.13	9.0
8	5.1	0.0	0.04	2.4	8	5.1	1.6	1.59	7.7
9	5.8	0.1	0.14	4.2	9	5.8	2.3	3.03	8.6
10	4.1	0.1	0.08	3.4	10	4.1	4.8	3.16	8.7
11	4.9	0.1	0.11	3.8	11	4.9	4.3	4.05	9.0
12	5.5	0.1	0.17	4.4	12	5.5	3.4	4.01	9.0
13	5.9	0.1	0.13	4.1	13	5.9	1.8	2.42	8.3
14	7.8	0.1	0.13	4.1	14	7.8	2.4	5.77	9.5
15	8.6	0.0	0.09	3.5	15	8.6	2.4	7.04	9.8
16	9.4	0.8	2.68	8.4	16	9.4	2.5	8.63	10.1
17	2.9	0.6	0.20	4.7	17	2.9	28.9	9.60	10.3
18	3.6	0.6	0.32	5.4	18	3.6	27.1	13.87	10.8

Таблица 6.5

	датчик №1 (1-6-3) продольн					датч	ик №2 (1-	6-4) верт	
Nº	f, Гц	А, мм	а, м/с ²	бал.	Nº	f, Гц	А, мм	а, м/с ²	бал.
1	3.6	0.1	0.05	2.7	1	3.6	6.7	3.40	8.8
2	3.9	0.1	0.04	2.4	2	3.9	4.7	2.80	8.5
3	4.4	0.1	0.05	2.7	3	4.4	3.6	2.77	8.5
4	4.2	0.1	0.04	2.4	4	4.2	3.6	2.48	8.3
5	4.6	0.1	0.09	3.5	5	4.6	4.8	4.03	9.0
6	3.6	0.1	0.06	2.9	6	3.6	9.0	4.58	9.2
7	4.1	0.1	0.06	2.9	7	4.1	6.0	3.96	9.0
8	5.1	0.0	0.02	1.4	8	5.1	2.0	2.01	8.0
9	5.8	0.1	0.09	3.5	9	5.8	2.0	2.63	8.4
10	4.1	0.1	0.04	2.4	10	4.1	5.2	3.47	8.8
11	4.9	0.1	0.05	2.7	11	4.9	4.9	4.62	9.2
12	5.5	0.1	0.07	3.2	12	5.5	4.0	4.76	9.3
13	5.9	0.1	0.07	3.2	13	5.9	1.6	2.13	8.1
14	7.8	0.1	0.31	5.3	14	7.8	2.5	5.99	9.6
15	8.6	0.2	0.44	5.8	15	8.6	2.4	6.97	9.8
16	9.4	0.2	0.60	6.3	16	9.4	2.4	8.49	10.1
17	2.9	0.3	0.11	3.8	17	2.9	31.1	10.31	10.4
18	3.6	0.3	0.17	4.4	18	3.6	28.1	14.37	10.8

Таблица 6.7

	датчик №1 (1-8-3) продольн					датчик №2 (1-8-4) верт			
Nº	f, Гц	А, мм	а, м/с ²	бал.	Nº	f, Гц	А, мм	а, м/с ²	бал.
1	3.6	6.3	3.24	8.7	1	3.6	0.5	0.24	4.9
2	3.9	4.4	2.66	8.4	2	3.9	0.3	0.20	4.7
3	4.4	3.4	2.62	8.4	3	4.4	0.3	0.20	4.7
4	4.2	3.4	2.35	8.2	4	4.2	0.3	0.18	4.5
5	4.6	4.6	3.80	8.9	5	4.6	0.4	0.30	5.3
6	3.6	8.5	4.35	9.1	6	3.6	0.6	0.32	5.4
7	4.1	5.7	3.75	8.9	7	4.1	0.4	0.28	5.2
8	5.1	1.6	1.64	7.7	8	5.1	0.0	0.02	1.4
9	5.8	2.4	3.15	8.7	9	5.8	0.2	0.32	5.4
10	4.1	4.9	3.22	8.7	10	4.1	0.2	0.13	4.1
11	4.9	4.4	4.18	9.1	11	4.9	0.1	0.10	3.7
12	5.5	3.5	4.21	9.1	12	5.5	0.3	0.33	5.4
13	5.9	1.8	2.53	8.3	13	5.9	0.2	0.26	5.1
14	7.8	2.6	6.33	9.7	14	7.8	0.2	0.53	6.1
15	8.6	2.7	7.75	10.0	15	8.6	0.4	1.17	7.2
16	9.4	3.0	10.36	10.4	16	9.4	0.9	3.13	8.6
17	2.9	30.2	10.03	10.3	17	2.9	1.3	0.42	5.7
18	3.6	28.1	14.36	10.8	18	3.6	1.2	0.59	6.2

6.3. Условия проведения динамических испытаний

Вибрационные испытания проводились в дневное время с 17.05.2010 по 21.05.2010 года при температуре воздуха - не ниже +15 ⁰C. Условия проведения вибрационных испытаний соответствуют нормальным и рабочим условиям применения используемого типа акселерометров АТ1105–10м.

Анализ результатов натурных динамических испытаний безнапорной системы трубопроводов на базе труб и деталей трубопроводов из ПВХ, «Pragma» и пластиковых колодцев «Pipelife» позволяет отметить следующее:

- в процессе испытаний ускорение виброплатформы по данным акселерометров, установленных на ней, изменялось в интервале от 2,01 до 14,37 м/с², что эквивалентно сейсмическому воздействию 8,0÷10,8 баллов. Частоты колебания системы изменялись в интервале от 2,9 до 9,4 Гц, амплитуды колебаний системы от 1,6 до 31,1 мм. При этом ускорение в разных точках трубопровода изменялось в интервале от 0 до 18,44 м/с².
- в процессе испытаний при совпадении величин собственных частот колебаний трубопровода с частотами колебаний виброплатформы имел место резонанс. Это явление наблюдалось при колебаниях системы с частотой *f*=4,4 Гц при амплитуде A=3,7 мм. При резонансе эксплуатационная надежность трубопровода не была нарушена.
- в процессе испытаний при частоте 3.6 Гц и амплитуде A=28.1мм ускорение системы по данным акселерометров составило 1.4g. При этом имело место разгерметизация стыков трубопроводов в зоне пересечения поперечных и продольных труб. Указанное позволяет сделать вывод о высокой эксплуатационной надежности трубопровода на

базе труб и деталей трубопроводов из ПВХ, «Pragma» с двойной структурированной стенкой и пластиковых колодцев «Pipelife».

Приложении к настоящему В 1 отчету приведены • осциллограммы, записанные с датчиков. По результатам обработки полученных на ЭВМ по испытаниям осциллограмм с помощью специальных программ выделены спектры пиковых значений ускорений и амплитуд колебаний элементов системы.

Рис. 6.1

7. ЗАКЛЮЧЕНИЕ. ВЫВОДЫ И РЕКОМЕНДАЦИИ

На основе анализа результатов динамических испытаний безнапорной системы трубопроводов на базе труб и фитингов ПВХ, «Pragma» и пластиковых колодцев «Pipelife» можно отметить следующее:

- В соответствии с программой экспериментальных исследований на виброплатформе Центра исследований сейсмостойкости сооружений были проведены динамические испытания безнапорной системы трубопроводов на базе труб «Pragma» и пластиковых колодцев «Pipelife». При испытаниях моделировались динамические нагрузки, соответствующие 7÷9 балльному воздействию. Трубопроводы при проведении испытаний были заполнены водой.
- 2. В процессе испытаний ускорение виброплатформы по данным акселерометров, установленных на ней, изменялось в интервале от 2,01 до 14,37 м/с², что эквивалентно сейсмическому воздействию 8,0÷10,8 баллов. Частоты колебания системы изменялись в интервале от 2,9 до 9,4 Гц, амплитуды колебаний системы от 1,6 до 31,1 мм. При этом ускорение в разных точках трубопровода изменялось в интервале от 0 до 18,44 м/с² (1.84g).
- 3. В процессе испытаний при совпадении величин собственных частот колебаний трубопровода с частотами колебаний виброплатформы имел место резонанс. Это явление наблюдалось при колебаниях системы с частотой *f*=4,4 Гц при амплитуде A=3,7 мм. При резонансе эксплуатационная надежность трубопровода не была нарушена.

Нарушение герметизации стыков трубопроводов в процессе динамических испытаний имело место при частоте 3.6 Гц и амплитуде А=28.1мм. Ускорение системы ПО данным акселерометров на данном этапе динамического нагружения составило 1.4g, что позволяет сделать вывод высокой 0 эксплуатационной надежности трубопроводов.

- 4. Безнапорная система трубопроводов на базе труб и деталей трубопроводов из ПВХ, «Pragma» и пластиковых колодцев «Pipelife» может быть рекомендована для применения в районах с сейсмичностью 7÷9 баллов.
- 5. В приложении 3 к настоящему отчету приложена видеосъемка испытания трубопровода на сейсмические воздействия.

СПИСОК ЛИТЕРАТУРЫ

- 1. MSK-64. Шкала сейсмической интенсивности MSK. 1964.
- Межгосударственный стандарт. ГОСТ 30546.1-98 «Общие требования к машинам, приборам и другим техническим изделиям и методы расчета их сложных конструкций в части сейсмостойкости».
- 3. СНиП 2.03.01-84*. «Бетонные и железобетонные конструкции. Нормы проектирования».
- Я.М. Айзенберг, Р.Т. Акбиев, В.И. Смирнов, М.Ж. Чубаков. «Динамические испытания и сейсмостойкость навесных фасадных систем». Ж. «Сейсмостойкое строительство. Безопасность сооружений» №1, 2008г. стр. 13-15.
- 5. Назаров А.Г., С.С. Дарбинян. Шкала для определения интенсивности сильных землетрясений на количественной основе. // В. кн.: Сейсмическая шкала и методы измерения сейсмической интенсивности. Академия наук СССР. Междуведомственный совет по сейсмологии и сейсмостойкому строительству (МСССС) при президиуме АН СССР. М.: Наука, 1975.
- Методические рекомендации по инженерному анализу последствий землетрясений. ЦНИИСК им. В.А.Кучеренко ГОССТРОЯ СССР. – М., 1980, 62 с.
- 7. Отчет по результатам натурных испытаний фрагментов навесных вентилируемых фасадов «ДИАТ». ЦНИИСК им. В.А.Кучеренко-М., 2007.
- 8. Поляков С.В., «Сейсмостойкие конструкции зданий», Изд. «Высшая школа», М., 1969г., 335 с.
- Корчинский И.Л. и др., «Сейсмостойкое строительство зданий», Изд. «Высшая школа», М., 1971г., 319 с.
- Карапетян Б.К. «Колебание сооружений, возведенных в Армении», Изд. «Айостан», Ереван, 1967.

11. Корчинский И.Л., Беченева Г.В. «Прочность строительных материалов при динамических нагружениях», Стройиздат, М., 1966г.

ПРИЛОЖЕНИЕ 1.

РЕЗУЛЬТАТЫ ДИНАМИЧЕСКИХ ИСПЫТАНИЙ ТРУБОПРОВОДОВ

Рис.П-1-1 . Акселерограммы (м/с²), записанные с датчика 1-2-1 (синим цветом), датчика 1-2-3 (зеленым цветом) и датчика 1-4-2 (красным цветом) при 11-м режиме испытаний (частота *f*=4.2 Гц; амплитуда А=3.7 мм)

Рис. П-1-2. Спектры пиковых значений ускорений (м/с²) для датчика 1-2-1 (синим цветом), датчика 1-2-3 (зеленым цветом) и датчика 1-4-2 (красным цветом) при 11-м режиме испытаний (частота *f*=4.2 Гц; амплитуда A=3.7 мм)

Рис. П-1-3. Спектры пиковых значений амплитуд (мм) для датчика 1-2-1 (синим цветом), датчика 1-2-3 (зеленым цветом) и датчика 1-4-2 (красным цветом) при 11-м режиме испытаний (частота *f*=4.2 Гц; амплитуда А=3.7 мм)

Рис. П-1-4. Акселерограммы (м/с²), записанные с датчика 1-2-3 (синим цветом), датчика 1-6-4 (зеленым цветом) и датчика 1-8-3 (красным цветом) при 11-м режиме испытаний (частота *f*=4.2 Гц; амплитуда A=3.7 мм)

Рис. П-1-5. Спектры пиковых значений ускорений (м/с²) для датчика 1-2-3 (синим цветом), датчика 1-6-4 (зеленым цветом) и датчика 1-8-3 (красным цветом) при 11-м режиме испытаний (частота *f*=4.2 Гц; амплитуда A=3.7 мм)

Рис. П-1-6. Спектры пиковых значений амплитуд (мм) для датчика 1-2-3 (синим цветом), датчика 1-6-4 (зеленым цветом) и датчика 1-8-3 (красным цветом) при 11-м режиме испытаний (частота *f*=4.2 Гц; амплитуда A=3.7 мм)

Рис. П-1-7. Акселерограммы (м/c²), записанные с датчика 1-2-1 (синим цветом), датчика 1-4-1 (зеленым цветом) и датчика 1-10-1 (красным цветом) при 14-м режиме испытаний (частота *f*=4.1 Гц; амплитуда А=6.0 мм)

Рис. П-1-8. Спектры пиковых значений ускорений (м/с²) для датчика 1-2-1 (синим цветом), датчика 1-4-1 (зеленым цветом) и датчика 1-10-1 (красным цветом) при 14-м режиме испытаний (частота *f*=4.1 Гц; амплитуда А=6.0 мм)

Рис. П-1-9. Спектры пиковых значений амплитуд (мм) для датчика 1-2-1 (синим цветом), датчика 1-4-1 (зеленым цветом) и датчика 1-10-1 (красным цветом) при 14-м режиме испытаний (частота *f*=4.1 Гц; амплитуда А=6.0 мм)

Рис. П-1-10. Акселерограммы (м/с²), записанные с датчика 1-2-3 (синим цветом), датчика 1-6-4 (зеленым цветом) и датчика 1-8-3 (красным цветом) при 14-м режиме испытаний (частота *f*=4.1 Гц; амплитуда А=6.0 мм)

Рис. П-1-11. Спектры пиковых значений ускорений (м/с²) для датчика 1-2-3 (синим цветом), датчика 1-6-4 (зеленым цветом) и датчика 1-8-3 (красным цветом) при 14-м режиме испытаний (частота *f*=4.1 Гц; амплитуда А=6.0 мм)

Рис. П-1-12. Спектры пиковых значений амплитуд (мм) для датчика 1-2-3 (синим цветом), датчика 1-6-4 (зеленым цветом) и датчика 1-8-3 (красным цветом) при 14-м режиме испытаний (частота *f*=4.1 Гц; амплитуда А=6.0 мм)

Рис. П-1-13. Акселерограммы (м/c²), записанные с датчика 1-2-1 (синим цветом), датчика 1-4-1 (зеленым цветом) и датчика 1-10-1 (красным цветом) при 15-м режиме испытаний (частота *f*=3.6 Гц; амплитуда A=28.6 мм)

Рис. П-1-14. Спектры пиковых значений ускорений (м/с²) для датчика 1-2-1 (синим цветом), датчика 1-4-1 (зеленым цветом) и датчика 1-10-1 (красным цветом) при 15-м режиме испытаний (частота *f*=3.6 Гц; амплитуда А=28.6 мм)

Рис. П-1-15. Спектры пиковых значений амплитуд (мм) для датчика 1-2-1 (синим цветом), датчика 1-4-1 (зеленым цветом) и датчика 1-10-1 (красным цветом) при 15-м режиме испытаний (частота *f*=3.6 Гц; амплитуда A=28.6 мм)

Рис. П-1-16. Акселерограммы (м/с²), записанные с датчика 1-2-3 (синим цветом), датчика 1-6-4 (зеленым цветом) и датчика 1-8-3 (красным цветом) при 15-м режиме испытаний (частота *f*=3.6 Гц; амплитуда А=28.6 мм)

Рис. П-1-17. Спектры пиковых значений ускорений (м/с²) для датчика 1-2-3 (синим цветом), датчика 1-6-4 (зеленым цветом) и датчика 1-8-3 (красным цветом) при 15-м режиме испытаний (частота *f*=3.6 Гц; амплитуда А=28.6 мм)

Рис. П-1-18. Спектры пиковых значений амплитуд (мм) для датчика 1-2-3 (синим цветом), датчика 1-6-4 (зеленым цветом) и датчика 1-8-3 (красным цветом) при 15-м режиме испытаний (частота *f*=3.6 Гц; амплитуда А=28.6 мм)
ПРИЛОЖЕНИЕ 2.

СВИДЕТЕЛЬСТВО

ПРИЛОЖЕНИЕ 3.

ВИДЕОСЪЕМКА ИСПЫТАНИЯ ТРУБОПРОВОДОВ НА СЕЙСМИЧЕСКИЕ ВОЗДЕЙСТВИЯ